Concrete Mix Design ACI 211.1-91

Concrete Technology

Introduction

- Concrete is composed principally of aggregates, a portland or blended cement, and water, and may contain other cementitious materials and/or chemical admixtures.
- The selection of concrete proportions involves a balance between economy and requirements for placeability, strength, durability, density, and appearance.
- Proportions calculated by any method must always be considered subject to revision on the basis of experience with trial batches.

- Concrete proportions must be selected to provide necessary placeability, density, strength, and durability for the particular application.
- In addition, when mass concrete is being proportioned, consideration must be given to generation of heat.

Background Data

- The following information for available materials will be useful:
 - Sieve analyses of fine and coarse aggregates
 - Unit weight of coarse aggregate.
 - Bulk specific gravities and absorptions of aggregates.
 - Mixing-water requirements of concrete developed from experience with available aggregates.
 - Relationships between strength and water-cement ratio or ratio of water-to-cement plus other cementitious materials, for available combinations of cements, other cementitious materials if considered, and aggregates.
 - Specific gravities of portland cement and other cementitious materials, if used.
 - Optimum combination of coarse aggregates to meet the maximum density gradings for mass concrete

General Procedure

See SNI 2847:2013 page 37/255 for details

Mix Design Procedure

Choice of **Estimation** Selection of **Estimation Estimation** Adjustment Calculation Choice of maximum of coarse of fine of mixing for Trial batch water of cement slump size of water and aggregate aggregate aggregate adjusment air content moisture aggregate content

Tabel 5.3.2.1 Kekuatan tekan rata-rata perlu bila data tersedia untuk menetapkan deviasi standar benda uji

Kekuatan tekan disyaratkan, MPa	Kekuatan tekan rata-rata perlu, MPa
	Gunakan nilai terbesar yang dihitung dari Pers. (5-1) dan (5-2)
$f_c' \leq 35$	$f'_{cr} = f'_{c} + 1,34s_{s} $ (5-1)
· ·	$f'_{cr} = f'_{c} + 2,33s_{s} - 3,5$ (5-2)
	Gunakan nilai terbesar yang dihitung dari Pers. (5-1) dan (5-3)
$f_c' > 35$	$f'_{cr} = f'_{c} + 1,34s_{s} $ (5-1)
ū	$f'_{cr} = 0,90f'_{c} + 2,33s_{s}$ (5-3)

Choice of Slump

TABLE A1.6.3.1—RECOMMENDED SLUMPS FOR VARIOUS TYPES OF CONSTRUCTION (SI)

	Slump, mm		
Types of construction	Maximum*	Minimum	
Reinforced foundation walls and footings	75	25	
Plain footings, caissons, and substructure walls	75	25	
Beams and reinforced walls	100	25	
Building columns	100	25	
Pavements and slabs	75	25	
Mass concrete	50	25	

^{*}May be increased 25 mm for methods of consolidation other than vibration.

See SNI 7576:2012 Tabel 1 for comparison

Choice of maximum size of aggregate, estimation of mixing water and air content

TABLE A1.6.3.3 — APPROXIMATE MIXING WATER AND AIR CONTENT REQUIREMENTS FOR DIFFERENT SLUMPS AND NOMINAL MAXIMUM SIZES OF AGGREGATES (SI)

	Water, kg/m	³ of concrete f	or indicated no	ominal maximi	ım sizes of agg	gregate		
Slump, mm	9.5 mm*	12.5 mm*	19 mm*	25 mm*	37.5 mm*	50 mm*†	75 mm ^{†‡}	150 mm ^{†‡}
		Non	-air-entrained	concrete				
25 to 50	207	199	190	179	166	154	130	113
75 to 100	228	216	205	193	181	169	145	124
150 to 175	243	228	216	202	190	178	160	_
Approximate amount of entrapped air in non-air-entrained concrete, percent	3	2.5	2	1.5	1	0.5	0.3	0.2
		A	ir-entrained co	ncrete				
25 to 50	181	175	168	160	150	142	122	107
75 to 100	202	193	184	175	165	157	133	119
150 to 175	216	205	197	184	174	166	154	_
Recommended average§ total air content, percent for level of exposure:								
Mild exposure	4.5	4.0	3.5	3.0	2.5	2.0	1.5**††	1.0**††
Moderate exposure	6.0	5.5	5.0	4.5	4.5	4.0	3.5**††	3.0**††
Extreme exposure‡‡	7.5	7.0	6.0	6.0	5.5	5.0	4.5**††	4.0**††

See SNI 7576:2012 Tabel 2 for comparison

Selection of water cement ratio

TABLE A1.6.3.4(a)—RELATIONSHIP BETWEEN WATER-CEMENT OR WATER-CEMENTITIOUS MATERAL RATIO AND COMPRESSIVE STRENGTH OF CONCRETE (SI)

	Water-cement ratio, by mass			
Compressive strength at 28 days, MPa*	Non-air-entrained concrete	Air-entrained concrete		
40	0.42			
35	0.47	0.39		
30	0.54	0.45		
25	0.61	0.52		
20	0.69	0.60		
15	0.79	0.70		

See SNI 7576:2012 Tabel 3 for comparison

TABLE A1.6.3.4(b)—MAXIMUM PERMISSIBLE WATER-CEMENT OR WATER-CEMENTITIOUS RATIO FOR CONCRETE IN SEVERE EXPOSURES (SI)*

Type of structure	Structure wet continu- ously or frequently and exposed to freezing and thawing†	Structure exposed to sea water or sulfates
Thin sections (railings, curbs, sills, ledges, ornamental work) and sections with less than 5 mm cover over steel		0.40‡
All other structures	0.50	0.45‡

See SNI 7576:2012 Tabel 4 for comparison

Estimation of coarse aggregate content

TABLE A1.6.3.6—VOLUME OF COARSE AGGREGATE PER UNIT OF VOLUME OF CONCRETE (SI)

Nominal maximum size	Volume of dry-rodded coarse aggregation per unit volume of concrete for differences modulit of fine aggregations.			ifferent	
of aggregate, mm	2.40	2.60	2.80	3.00	
9.5	0.50	0.48	0.46	0.44	
12.5	0.59	0.57	0.55	0.53	
19	0.66	0.64	0.62	0.60	
25	0.71	0.69	0.67	0.65	
37.5	0.75	0.73	0.71	0.69	
50	0.78	0.76	0.74	0.72	
75	0.82	0.80	0.78	0.76	
150	0.87	0.85	0.83	0.81	

See SNI 7576:2012 Tabel 5 for comparison

Trial batch adjusment

TABLE A1.6.3.7.1—FIRST ESTIMATE OF MASS OF FRESH CONCRETE (SI)

Nominal	First estimate of concrete unit mass, kg/m3*			
maximum size of aggregate, mm	Non-air-entrained concrete	Air-entrained concrete		
9.5	2280	2200		
12.5	2310	2230		
19	2345	2275		
25	2380	2290		
37.5	2410	2350		
50	2445	2345		
75	2490	2405		
150	2530	2435		

See SNI 7576:2012 Tabel 6 for comparison

- Read Appendix 2 of ACI 211.1-91, Example Problem in Metric (SI) System
- We will continue our discussion based on that example

Home Work 07

- Your task is to make a mix design of a specific concrete compressive strength (f'c).
- Use your own data from previous laboratory test.
- Submit your work, 24 hours after the class.